### Hands-On Session 6: Monolayer Boron Nitride

BerkeleyGW Workshop 11/23/2013 Diana Qiu

### Goals:

- 1. Demonstrate a GW-BSE calculation for a 2D semiconductor
- 2. Look at the behavior of  $\epsilon^{-1}_{00}(q)$  for a system with a truncated Coulomb interaction
- 3. Learn how to use BerkeleyGW's visualization tools to look at the exciton wave function

#### **Instructions**:

Please copy the example directory into your scratch directory

>> cp -rP /project/projectdirs/m1694/BGW-2013/6-boron\_nitride \$SCRATCH/

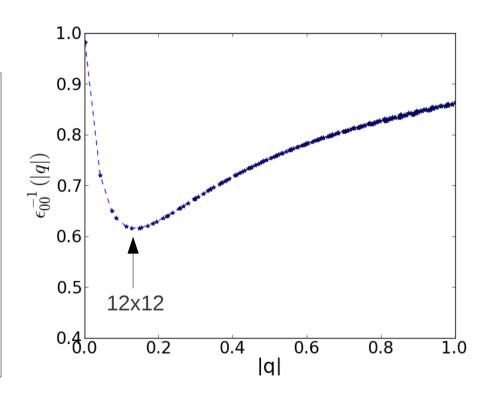
### 1-MF

- Please go the directory ``6-boron\_nitride/1-mf/``
- Enter each directory in numerical order and follow the instructions in the README files.

#### Some things to note for 2D calculations:

- The system is in a periodic supercell. Though we will not do so in this calculation, you should always converge the k-grid sampling and amount of vacuum between periodic images.
- The number of nscf bands you will need to generate will increase with the supercell size.
- You do not have to sample k-space in the vacuum direction.

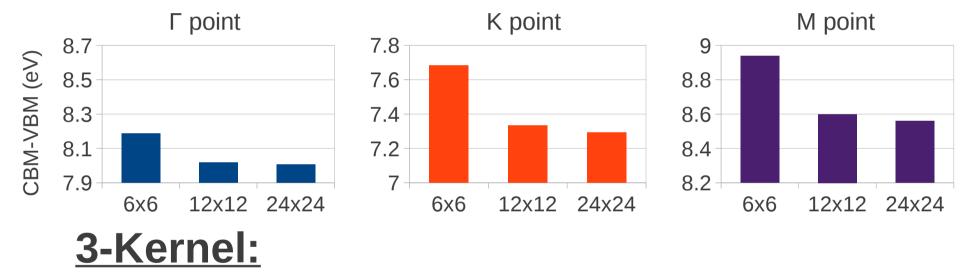
## 2-BGW


• One you are done with the mean field calculations you can go to the directory ``6-boron\_nitride/2-bgw/`` to start the GW calculation

# 1-Epsilon

- Please follow the instructions in the README file.
- New BGW flag: cell\_slab\_truncation

#### Some things to note:


- Coulomb truncation forces  $\epsilon^{-1}_{00}(0)=1$ .
- In a 2D system with a truncated Coulomb interaction, it's important to capture the variation in  $\epsilon^{-1}_{00}(q)$  for small q-vectors.
- The location and sharpness of the "dip" in  $\epsilon^{-1}_{00}(q)$  varies with the amount of vacuum.

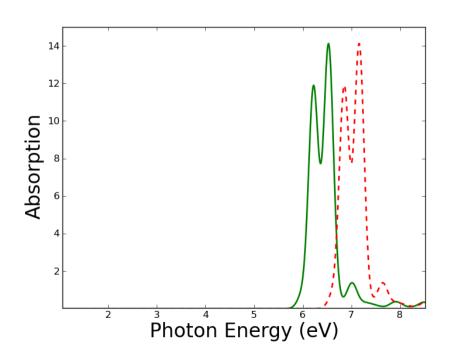


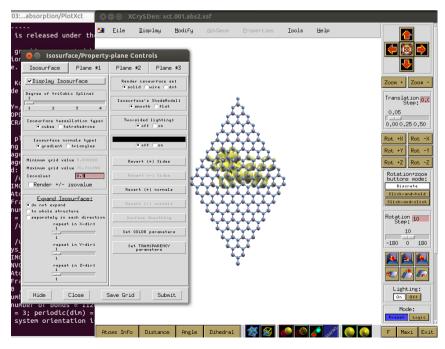
### 2-Sigma:

Please follow the instructions in the README file.

Convergence with respect to q-grid sampling used in Epsilon:




- This can be run simultaneously with Sigma.
- Please follow the instructions in the README file.


### **4-Absorption:**

 Please go to the directory 4-absorption and follow the instructions in the README file

### **PlotXct:**

 Please go to the directory 4-absorption/PlotXct and follow the instructions in the README file





### Goals:

- 1. Demonstrate a GW-BSE calculation for a 2D semiconductor
- 2. Look at the behavior of  $\epsilon^{-1}_{00}(q)$  for a system with a truncated Coulomb interaction
- 3. Learn how to use BerkeleyGW's visualization tools to look at the exciton wave function

#### **Instructions**:

Please copy the example directory into your scratch directory

>> cp -rP /project/projectdirs/m1694/BGW-2013/6-boron\_nitride \$SCRATCH/

Follow the instructions in the README files.